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Percolation of individual single walled carbon nanotubes (SWCNTs) and of SWCNT bundles
dispersed in a non-interacting polymeric matrix has been analyzed computationally using
an analytical model and a numerical simulation method. While the analytical model used is
strictly valid only in the limit of an infinite length-to-diameter aspect ratio of the dispersed
phase, good agreement is found between its predictions and the ones obtained using a
computationally-intensive numerical method for the aspect ratios as small as 350. Since the
aspect ratio of the individual SWCNTs is on the order of 1,000–10,000, this finding suggests
that the analytical model can be used to study SWCNT percolation phenomena.

An electrical network model is also applied to the percolating and near-percolating
SWCNT clusters in order to compute the dc electrical conductivity of a CP2 polyimide +
SWCNT composite material. A reasonably good agreement is obtained between the
computational and the experimental results with respect to both the magnitude of the
electrical conductivity and to its behavior in the vicinity of the percolation threshold.
C© 2004 Kluwer Academic Publishers

1. Introduction
Electrically conductive polymeric materials are sought
in many applications in which antistatic, electrostatic
dissipative and electromagnetic shielding/absorbing
properties are required. For instance, electromagnetic
interference shielding is essential in many portable
electronic devices (e.g. laptop computers, cell phones,
and pagers) to prevent interference with and from other
electronic devices. Since there is presently no suitable
polymeric material which can meet these requirements,
electrically conductive additives (metals, carbon black,
etc.) are generally used in the electronic equipment
cases made of a polymer-based material. However, such
materials are frequently associated with significant in-
creases in the weight and manufacturing cost, as well
as with reduced surface quality and manufacturability.
High electrostatic dissipative properties are required,
for example, in automobile body parts which are in-
creasingly being made of plastics. During electrostatic
painting of such parts, a charge layer is formed as a re-
sult of the deposition of charged paint droplets forming
the initial coat. Such a charge-layer electrostatically re-
pels the additional incoming paint droplets, giving rise
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to a significant paint waste and to the associated envi-
ronmental problems. One solution to this problem could
be the use of a conductive primer coat but this would
introduce an additional processing step and hence in-
crease the cost. On the other hand, if the part being
painted possesses a sufficient level of electrical conduc-
tivity, and it is grounded during the painting process,
no charge build up takes place.

The variation of electrical conductivity of polymers
containing a conductive additive (filler) with the vol-
ume fraction of the filler (often referred to as the “filler
loading”) typically shows a classical S-curve behavior.
That is, up to a critical loading (generally referred to as
the “percolation threshold”), the bulk conductivity in-
creases very slowly with the filler loading. At the perco-
lation threshold, the conductivity undergoes an abrupt
increase (of several orders of magnitude). At post per-
colation threshold levels of the filler loading, electrical
conductivity again becomes a weak function of the vol-
ume fraction of the conductive additive. This behavior
is well understood and it is attributed to the establish-
ment of multiple, continuous paths through the con-
ductive phase at the percolation threshold. Typically,
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an experimentally established percolation threshold is
many times higher than the one which would be ob-
tained if the particles of the conductive phase could
be placed in the optimum positions to form a continu-
ous network. Reduction of the experimental percolation
threshold is very important since excessive filler load-
ing may compromise the weight, mechanical proper-
ties and manufacturability. For example, in many poly-
mers, carbon black loading levels as high as 50 vol%
are required to reach the necessary level of electrical
conductivity [1]. However, these high levels of the car-
bon black seriously degrade mechanical properties of
the resulting polymer-matrix composite rendering it un-
moldable [1].

In recent years, the potential of carbon nanotubes as
electrically conductive fillers have been actively stud-
ied. Since their discovery in 1991 [2], carbon nanotubes
have been the subject of intensive investigation pri-
marily due to the unique combination of mechanical,
electrical and chemical properties they possess. De-
pending on the fabrication method used, carbon nan-
otubes appear either predominantly as single-walled
carbon nanotubes (SWCNTs) or as multi-walled car-
bon nanotubes (MWCNTs). SWCNTs, predominantly
produced in carbon ablation and are discharge pro-
cesses, can be described as single graphene sheets rolled
up into a cylinder and capped with hemi-fullerenes
at each end. Depending on their diameter and the
spiral conformation (chirality), SWCNTs can be ei-
ther semiconducting or metallic. Mechanical proper-
ties of SWCNTs are quite remarkable; their elastic
modulus is typically above 1TPa, and they can un-
dergo very large non-uniform (even highly localized)
reversible deformations. Except for their ends and
the locations of topological defects (e.g. 7-5-5-7 and
Stone-Wales defects), SWCNTs are generally not very
reactive.

MWCNTs are generally produced during thermal de-
composition of the carbon precursors. Due to a weak
inter-walls bonding, MWCNTs have generally inferior
mechanical properties relative to those of the SWC-
NTs. Their electrical properties are similar to those
of the SWCNTs although they cannot be easily cor-
related with their chirality. Chemical properties of the
MWCNTs are dominated by the structure of their
outer wall and are, hence, similar to the ones of the
SWCNTs.

As mentioned earlier, carbon nanotubes have been
actively investigated in recent years, as electrically con-
ductive fillers in a polymeric matrix [3]. In particular,
SWCNTs appear to be very attractive due to their high
(ca. 106–107 �−1 m−1) electrical conductivity and a
high (ca. 103–104) length-to-diameter aspect ratio (the
diameter of the SWCNTs is typically around 1nm while
their length is on the order of 1 µm = 1,000 nm). For
comparison, the aspect ratio in carbon black is typi-
cally 1–2. As shown schematically in Fig. 1a and b,
the percolation threshold decreases with an increase in
the aspect ratio, as slender additive particles are capa-
ble of forming a continuous network at a lower level of
the filler loading. In a number of investigations [3], it
has been established that the percolation threshold for

SWCNTs in various non-interacting polymers is signif-
icantly lower than 1%. At such low levels of the filler
loading, the flowability of the SWCNT-loaded thermo-
plastic melt or un-polymerized thermosetting resin is
not significantly compromised ensuring a good proces-
sibility of these materials.

The percolation phenomenon of the additive phase
has been studied extensively over the last two decades or
more. Numerous analytical and numerical models [4–
11] have been proposed which, with various degrees of
success, account for the experimentally observed per-
colation thresholds. However, these models generally
ignore the potential role that the interactions between
filler particles can have on the percolation threshold.
Such interactions, or more precisely, the van der Walls
interactions, are often found to be significant in the case
of SWCNTs dispersed in polymers and hence must be
included into the percolation models. Hence, the ob-
jective of the present paper is to attempt to include
the inter-SWCNT interactions into an analytical and
a numerical model for the percolation threshold and to
quantify the effect of such interactions.

The organization of the paper is as follows: The
descriptions of an analytical and a numerical com-
putational method used to determine the percolation
threshold for SWCNTs dispersed in a non-interacting
polymeric matrix are presented in Sections 2.1 and
2.2, respectively. The computer program used to com-
pute the electrical conductivity of a polymer contain-
ing SWCNT fillers is described in Section 2.3. The
main results obtained in the present work are pre-
sented and discussed in Section 3, while the key conclu-
sions resulted from the present study are summarized in
Section 4.

2. Computational procedure
2.1. Analytical percolation model
There are several analytical models capable of pre-
dicting the percolation threshold for high length-
to-diameter aspect-ratio cylinder-like particles of a
discrete (minor) phase (such as a dispersion single
SWCNTs or SWCNT bundles) embedded into a non-
interacting matrix (the major) phase [4–11]. The basic
ideas defined in these models are used in the present
work to predict the percolation threshold single and
bundled SWCNTs dispersed in a non-interaction poly-
meric matrix.

According to the analytical models [4–11], the num-
ber of SWCNTs at the percolation threshold, ρc, in the
limit of an infinite nanotube length-to-diameter aspect
ratio, is defined as:

ρc = V

Vex
(1)

where V is the specimen volume and Vex is the nanotube
excluded volume. The excluded volume of an object is
generally defined as the volume associated with that
object which is not accessible by the center of mass of
another (similar or identical) object. Following a sim-
ple geometrical argument, this volume for a SWCNT,
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Figure 1 (a) A two-dimensional schematic of the percolation of randomly-dispersed high aspect-ratio particles; (b) the corresponding non-percolating
microstructure for circular particles at the same area fraction as in (a).

modeled as a cylinder of length l, and radius r , capped
at each end with a hemisphere, is defined as [4–11]:

Vex = 32

3
πr3 + 8πlr2 + 4l2r〈sin(θ )〉. (2)

The term 〈sin(θ )〉, the average value of sin(θ ), de-
scribes the degree of SWCNT alignment with θ being
the angle between two SWCNTs. When the SWCNTs
are perfectly aligned (θ = 0), 〈sin(θ )〉 = 0. On the
other hand, for a random distribution of the SWCNT
orientations, starting from the expression for a solid
angle, �:

� = 4π sin2(θ/2) (3)

the probability density distribution function for
θ, f (θ ) = (1/4π )d�/dθ , (the 4π normalization fac-

tor is used to satisfy the condition
∫ π

0 f (θ )dθ = 1) has
been derived as:

f (θ ) = 0.5 sin θ (4)

and hence the 〈sin(θ )〉 term is evaluated as:

〈sin(θ )〉 =
∫ π

0
f (θ ) sin(θ )dθ =

∫ π

0
0.5 sin2 θ dθ

= 0.25π (5)

A truly random distribution of the SWCNTs can-
not be generally expected since the SWCNTs tend to
interact with each other and to promote their mutual
alignment. This is simply the result of the fact that van
der Waals interactions between the aligned SWCNTs
are stronger giving rise to a lower energy of the system.
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Consequently, the orientation of the SWCNT is not ex-
pected to be uniform but rather skewed in the direction
of aligned nanotubes. Before the equilibrium orienta-
tion distribution of the SWCNTs can be determined,
one must first quantify the variation of the potential en-
ergy of two nanotubes with the mis-orientation angle θ

and with the inter-nanotube distance. Toward that end,
the van der Waals interaction energy between two car-
bon atoms, ECC, separated by a distance d, is expressed
using the following 12-6 Lennard-Jones potential
[12]:

ECC(d) = C12

d12
− C6

d6
(6)

where the interaction parameters C12 and C6 have the
values of 2.48 × 10−8 eVnm12 and 2.0 × 10−5 eVnm6,
respectively [12]. In addition, a Lennard-Jones po-
tential cut-off distance (the inter-atomic distance be-
yond which the atoms are assumed not to interact)
is set to 1.64 nm [12]. To find the total interaction
energy between two SWCNTs, all pair interactions
between the atoms of the two nanotubes must be in-
cluded. The orientation of the two SWCNTs can be
defined by the relative position vector of their cen-
ters, r12, and by the orientation vectors of their axes,
w1 and w2, respectively. The total van der Waals
interaction energy between the two SWCNTs, Eint,
can then be defined by the following double surface
integral:

Eint(r, w1, w2) =
∫

S1

d S1

∫
S2

d S2 Ecc(|s1 − s2|)σ 2 (7)

where S1 and S2 denote the surfaces of the two SWC-
NTs while s1 and s2 are the position vectors of the
surfaces elements dS1 and dS2, respectively and the
atomic surface density σ is assigned the following
value: σ = 38.3 nm−2 [12].

While there is no closed-form solution for the double
surface integral given on the right hand side of Equation
7, the numerical evolution of this integral using a nu-
merical procedure (e.g. a multi-dimensional trapezoidal
rule) is trivial. The results of the numerical computation
of the variation of interaction energy for two SWCNTs
with an misorientation angle, θ , normalized by the in-
teraction energy between the same two SWCNTs in a
mutually orthogonal orientation, Eint,θ /Eint,θ = π/2
at two different values of the nanotubes centers dis-
tances, |r12|, are shown in Fig. 3. Nanotubes with a
typical length-to-diameter aspect ratio l/2r = 103 and
with a typical radius r = 0.7 nm, are considered in
Fig. 3. The two values of the nanotubes centers dis-
tances correspond respectively to: (a) the equilibrium
van der Waals separation of two parallel SWCNTs
(2 × 0.7 nm + 0.17 nm = 1.57 nm) where a value of
0.17 nm is used for the van der Waals separation of two
carbon atoms and (b) a separation of two parallel SWC-
NTs at which the shortest distance between the carbon
atoms of the two nanotubes is equal to the van der Waals
cut-of distance (2×0.7 nm+1.64 nm = 3.04 nm). The
results shown in Fig. 3 suggest that the Eint,θ /Eint,θ=π/2
vs. θ , is only weakly dependent on the inter-nanotube

distance and that it could be fitted by a polynomial of
the six order as:

Eint(θ ) = Eint(θ=π/2)(3.90θ6 + 19.63θ5 + 35.92θ4

+ 27.38θ3 + 6.61θ2−1.13θ

+ 2.96)0 ≤ θ≤ π/ 2

Eint,π/2+θ = Eint,π/2−θ0 ≤ θ ≤ π/2 (8)

The curve corresponding to the fitting polynomial
of the sixth order given in Equation 8 is displayed
in Fig. 2 using a dotted line and labeled “Fitting
Polynomial”.

The probabilistic density distribution function
for the orientation of SWCNTs is next defined
as:

f (θ ) = 1

Z
sin(θ ) exp

(
− Eint,θ − Eint,θ=0

RT

)
(9)

where Z is a normalization factor which ensures that∫ π

0 f (θ ) = 1, R is the universal gas constant and
T (= 295 K) is the temperature. Once the probabil-
ity density distribution function f (θ ) is defined, the
〈sin(θ )〉 term can be evaluated using the left-most rela-
tion in Equation 5. This procedure yielded 〈sin(θ )〉 =
(0.053 − 0.11)π for the range of values for the nan-
otubes centers distances shown in Fig. 2. This finding
suggests a significant deviation of the “equilibrium”
orientation of SWCNTs from a random distribution
(〈sin(θ )〉 = 0.25π ) toward an aligned arrangement of
the nanotubes (〈sin(θ )〉 = 0).

Once the 〈sin(θ )〉 term is defined, the excluded vol-
ume can be calculated and the volume fraction of the
nanotubes at the percolation threshold, φc, computed
as:

φc = ρcVSWCNT

V
(10)

Figure 2 Variation of the normalized van der Waals interaction energy
between two SWCNTs as a function of their mis-orientation angle and
the nanotubes centers distance, |r12|.
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where the volume of a SWCNT, VSWCNT, is defined
as:

VSWCNT = 4

3
πr3 + πlr2 (11)

It should be noted that the procedure presented above
is strictly valid only in the limit of an infinite nanotube
length-to-diameter aspect ratio (l/2r → ∞). There-
fore, a numerical simulation method is used in the next
section to recalculate the percolation thresholds for the
single SWCNTs and for the bundles consisting of three,
seven, and nineteen closely-packed SWCNTs. While
numerical methods may suffer from a number of lim-
itations (primarily associated with the fact that they
typically require a large number of simulation runs in
order to obtain a statistically accurate solution), they are
generally considered more reliable at smaller values of
the aspect ratio.

2.2. Numerical simulations of percolation
Since the analytical model presented in the previous
section is strictly valid only in the limit of an infinite
(l/2r) aspect ratio, numerical simulations are also used
for determination of the number density (or the volume
fraction) of the SWCNTs at the percolation threshold.
The simulations are carried out using the following pro-
cedure:

(a) First, a cubic unit cell is constructed, and the pe-
riodic boundary conditions applied over the surfaces of
the unit cell. The size of the unit cell is varied in order
to determine a potential dependence of the computed
percolation threshold on the unit-cell size.

(b) SWCNTs are next added (one at a time) into the
unit cell by selecting five random numbers. Three of
these random numbers are chosen from a uniform dis-
tribution and are used to define the coordinates for the
center of mass of a nanotube. The other two random
numbers are used to specify the components of the unit
vector along the nanotube axis. These two random num-
bers are chosen in accordance with the density distribu-
tion functions given by either Equation 9 or Equation
4, depending on whether the effect of van der Waals
interactions on the orientation distribution of the car-
bon nanotubes is considered or not. This is done by first
generating a random number ran distributed uniformly
in the range (0, 1) and then using the method of in-
version of the cumulative distribution function [13] to
compute the nanotubes mis-orientation angle, θ , as:

θ = F−1
θ (ran) (12)

where Fθ () is the cumulative distribution function cor-
responding to the probability density function given by
Equations 4 and 9. Once the coordinates for the center
of mass and the orientation of a SWCNT are specified,
and using the SWCNT length (l = 3 µm), the coordi-
nates of the end points of the SWCNT in question are
defined.

(c) Each time after a new SWCNT is added into the
unit cell, it is checked if it is in contact with one or more

of the SWCNTs already present in the unit cell. This
is done by determining the minimum distance between
the axes of the SWCNT in question and the axes of the
remaining SWCNTs. If such distance for two SWCNTs
is smaller than the nanotube diameter (2r ), the SWC-
NTs are considered to be in contact. The minimum
distance between the axes of two SWCNTs is deter-
mined using the procedure proposed by Allen et al. [14].
This procedure involves two steps: (i) First, the short-
est distance, dnormal, between the two “carrier” lines,
(the lines containing the axes of the two SWCNTs) is
determined. It should be noted that the vector along
this shortest distance is normal to both carrier lines;
and (ii) the two carrier lines are next projected onto a
plane whose normal is co-linear with the vector along
dnormal, and the shortest in-plane distance between the
two SWCNTs, din-plane, computed using a simple ge-
ometric procedure. The shortest spatial distance be-
tween the two SWCNTs, dSWCNT, is then calculated

as: dSWCNT =
√

d2
normal + d2

in-plane.

(d) When two SWCNTs are found to be in contact,
their minimum distance is generally smaller than 2r
which means that the two SWCNTs penetrate each
other. Since such penetration is an un-physical phe-
nomenon, the added SWCNT is translated in a ran-
domly selected direction until the minimum distance
between the two SWCNTs becomes equal 2r . Forma-
tion of the clusters consisting of touching nanotubes is
handled using the tree-based union/find algorithm pro-
posed by Newman and Ziff [15].

(e) As SWCNTs are added and clusters are formed
by the contacting SWCNTs, an algorithm is activated
to check if any of the clusters extends over the entire
unit cell. Once a cluster which extends over the en-
tire unit cell is detected, the simulation is terminated,
and the number of SWCNTs, the volume of a nanotube
and the volume of the unit cell used to determine the
SWCNT volume fraction at the percolation threshold.
While calculating the volume fraction of SWCNTs at
the percolation threshold, for the SWCNTs extending
over the cell boundary only the volume of their seg-
ments lying within the unit cell are considered.

2.3. Computation of the electrical
conductivity

Electrical conductivity of the polymer containing a dis-
persion of the SWCNTs is calculated using the SPICE
3 computer program which was originally created and
currently maintained at the Electrical Engineering and
Computer Science Department at the University of
California at Berkeley [16]. SPICE 3 is a general-
purpose circuit simulation program for nonlinear dc,
nonlinear transient, and linear ac analyses. Circuits an-
alyzed may contain resistors, capacitors, inductors, mu-
tual inductors, independent voltage and current sources,
four types of dependent sources, lossless and lossy
transmission lines, switches, uniform distributed RC
lines, and the five most common semiconductor de-
vices: diodes, BJTs, JFETs, MESFETs, and MOSFETs.
The dc analysis portion of SPICE 3 used in the present
work determines the dc operating point of a circuit in
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which inductors are shorted and capacitors opened. A
dc analysis is automatically performed prior to a tran-
sient analysis to determine the transient initial condi-
tions, and prior to an ac small-signal analysis to de-
termine the linearized, small-signal models for non-
linear devices. If requested, the dc small-signal value
of a transfer function (ratio of output variable to input
source), input resistance, and output resistance is also
computed as a part of the dc solution. The dc anal-
ysis can also be used to generate dc transfer curves:
a specified independent voltage or current source is
stepped over a user-specified range and the dc out-
put variables are stored for each sequential source
value.

Since the electrical conductivity of a typical polymer-
matrix material such as CP2, an aromatic colorless
polyimide used in the work of Ounaies et al. [3], is
typically around 10−17–10−18 S/cm and thus at least
22 orders of magnitude smaller than that of SWC-
NTs (typically 104–105 S/cm), the electrical conduc-
tivity in a polymeric material containing percolating
SWCNTs clusters is assumed to be controlled by the
SWCNTs. When the concentration of SWCNTs in the
polymeric matrix is lower than the percolation thresh-
old, non-percolating SWCNTs clusters are assumed to
be bridged by fibers of the polymeric-matrix material
whose diameter (and hence electric conductance) is
taken to scale with the volume fraction of the poly-
mer. Additional details regarding the calculation of the
electrical conductivity of the polymeric material con-
taining a hypo-percolation-threshold volume fraction
of the SWCNTs is given in Section 3.3. It should be
also noted that in order to eliminate unnecessary com-
putation, all SWCNT end segments and the segments
intersecting the faces of the unit cell orthogonal to the
direction of current flow are excluded during calcula-
tion of the electrical conductivity.

3. Results and discussion
3.1. Analytical percolation model
The analytical model developed in Section 2.1 is used
in this section to compute the percolation threshold for
single SWCNTs and SWCNT bundles dispersed in a
non-interacting (polymeric) matrix.

To determine the percolation threshold for the sin-
gle SWCNTs, Equations 2 and 11 are substituted into

Figure 3 Schematics of: (a) a single SWCNT and (b)–(d) three-, seven- and nineteen-SWCNT bundles, respectively. Dots are used to represent
nanotubes walls while the lines are used to represent van der Waals radii.

Equation 10 and the average values for the nanotubes
radius, r = 0.7 nm, and for the nanotubes length,
l = 3 µm, as reported by Ounaies et al. [3] are used. Un-
der the assumption of a random orientation distribution
of the SWCNTs (〈sin(θ )〉 = 0.25π ), this procedure
yielded the SWCNT volume fraction at the percola-
tion threshold φc = 0.000233, which is less than one
half of the experimental value (=0.0005 ± 0.00015)
reported by Ounaies et al. [3]. When van der Waals in-
teractions between the SWCNTs are taken into account
(〈sin(θ )〉 = (0.053−0.11)π ), the SWCNT volume frac-
tion at the percolation threshold is in a range between
0.000425 and 0.000876. These values are in a much
better agreement with their experimental counterpart,
φc = 0.0005 ± 0.00015.

The computed percolation threshold values dis-
cussed above are obtained under the assumption that
SWCNTs are dispersed as single nanotubes within the
polymer matrix. Since a complete separation of the
SWCNT ropes (the clusters of closely packed parallel
nanotubes obtained during fabrication of the SWCNTs)
into individual nanotubes is generally not attainable due
to the van der Waals type of attraction between the
closely spaced nanotubes, it is important to assess how
a potential lack of complete separation of the SWCNT
ropes into individual nanotubes (or a potential reag-
glomeration of the nanotubes into bundles) affects the
SWCNT volume fraction at the percolation threshold.
Toward that end, the bundles consisting of three, seven
and nineteen touching parallel SWCNTs arranged on a
triangular (close-packed) lattice are considered (Fig. 3).
The calculation is simplified by treating such bundles
as having a cylindrical shape and being terminated with
hemi-spherical end caps. Hence, the length of the cylin-
drical portion of such bundles is the same as that of
the individual SWCNTs while their radius is increased.
This, in turn, causes the aspect ratio (l/2r ) to decrease
with the number of SWCNTs in the bundle (Table I).
It should be noted that a 0.34 nm van der Waals wall-
to-wall separation of the adjacent nanotubes is used in
Table I when calculating the radii of the three-, seven-,
and nineteen-SWCNT bundles [12]. The effect of the
number of nanotubes in the bundle, under both the con-
dition of a random orientation distribution of the nan-
otube bundles and the condition of a partial alignment
of the bundles due to the bundle-bundle van der Waals
interactions, on the volume fraction of SWCNTs at the
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T ABL E I The effect of SWCNT bundling on the percolation threshold volume fraction as predicted by the analytical model

Number of SWCNTs Bundle radius Bundle length Bundle aspect Percolation threshold volume Percolation threshold volume
in the bundle (nm) (µm) ratio fraction (Random orientation) fraction (SWCNT interactions)

1 0.70 3.0 2143 0.000233 0.000528–0.001091
3 1.86 3.0 807 0.000262 0.000592–0.001215
7 2.61 3.0 575 0.000435 0.000980–0.002001

19 4.35 3.0 345 0.000705 0.001580–0.003191

percolation threshold as predicted by Equation 10 in
conjuction with Equations 2 and 11 is shown in Table I.
The results displayed in Table I show that as the number
of SWCNTs in the bundle increases, the SWCNT vol-
ume fraction at the percolation threshold also increases.
Furthermore, under the assumption of a random orien-
tation distribution of the SWCNTs or their bundles, if
on average the SWCNTs are dispersed as seven- and
nineteen-nanotube bundles, the agreement between the
model prediction (0.000435–0.000705) and the exper-
iment (=0.0005 ± 0.00015) is excellent. However, it
should be noted that as the aspect ratio decreases, the
analytical approach used, which is strictly valid only in
the l/2r → ∞ limit, becomes less reliable. Therefore,
the numerical simulation method developed in Section
2.2 is used in the next section to recalculate the per-
colation thresholds for the single SWCNTs and for the
three-, seven-, and nineteen-nanotube bundles.

It should be noted that if the equations presented in
Ref. [9] are used to compute the percolation thresh-
old under the random-distribution conditions, the val-
ues obtained are in a somewhat better agreement with
the experimental ones. Nevertheless, when the effect
of SWCNT interactions is included in the equations
presented in Ref. [9], the values of the percolation
threshold are found to increase in the same way
as the values listed in Table I. This finding sug-
gests that, while the values of the percolation thresh-
old are generally effected by the analytical model
used, the effect of nanotubes interactions is signifi-
cant but weakly affected by the choice of the analytical
model.

3.2. Numerical simulations
The numerical model developed in Section 2.2 is
used in this section to compute the percolation thresh-
old for the individual SWCNTs and for the three-,
seven-, and nineteen-SWCNT bundles dispersed in a
non-interacting (polymeric) matrix. Examples of the
percolating clusters consisting of randomly-distributed
(non-interacting) SWCNTs and of SWCNTs interact-
ing through the van der Waals forces are displayed in
Fig. 4a and b, respectively. It should be noted that in
order to increase clarity of the nanotube structures dis-
played in Fig. 4a and b, only the SWCNTs associated
with the percolating clusters are shown and these nan-
otubes are displayed using a radius which is 100 times
larger than the actual nanotube radius. A comparison
of the nanotube structures displayed in Fig. 4a and b
shows that, as established in the previous section us-
ing the analytical percolation model, interactions be-
tween the nanotubes which give rise to their mutual

Figure 4 Typical structure of a percolating cluster in the cases of: (a) a
random distribution of the SWCNTs and (b) the SWCNTs interacting
via the van der Waals forces.

local (short-range) alignment increases the percolation
threshold.

The numerical simulation results of the computa-
tion of the percolation threshold in the case of isolated
SWCNTs and of three-, seven-, and nineteen-SWCNT
bundles are shown in Table II. The results shown in
Table II contain the mean values and the standar devi-
ations for 50 numerical simulations in each case. The
results displayed in Table II show that, as expected, the
percolation threshold increases with an increase in the
number of SWCNTs in the bundle and as a result of
the van der Waals interactions between the nanotubes.
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T ABL E I I The effect of SWCNT bundling on the percolation threshold volume fraction as predicted by the numerical model (The results shown
for each case correspond to the mean values and the standard deviation of ten simulations)

Number of SWCNTs Bundle radius Bundle length Bundle aspect Percolation threshold volume Percolation threshold volume
in the bundle (nm) (µm) ratio fraction (Random orientation) fraction (SWCNT interactions)

1 0.70 3.0 2143 0.000201 ± 0.000044 0.000512 ± 0.000069
3 1.86 3.0 807 0.000332 ± 0.000031 0.000873 ± 0.000124
7 2.61 3.0 575 0.000492 ± 0.000063 0.001546 ± 0.000346

19 4.35 3.0 345 0.000853 ± 0.000061 0.002495 ± 0.000497

Figure 5 Effect of the unit cell size on the percolating threshold in the
cases of a random distribution of the SWCNTs and the SWCNTs inter-
acting via the van der Waals forces.

Furthermore, a comparison of the corresponding re-
sults shown in Tables I and II shows that the agreement
between the predictions of the analytical and the nu-
merical models are quite good. This is particularly the
case for the individual SWCNTs. This finding suggests
that the simpler and computationally less demanding
analytical model can be used to predict the percolation
threshold for cylinder-like particulates with an aspect
ratio as low as ca. 350.

Since the numerical calculations of the percolation
threshold are carried out under the periodic boundary
conditions, the size of the unit cell used in the computa-
tion can in general have an effect on the computational
results. To assess the potential effect of the size of the
unit cell on the computed percolation threshold, numer-
ical simulations of the percolation of isolated SWCNTs
in the absence and in the presence of inter-SWCNT in-
teractions are carried out at four different values of the
unit cell size. The results of these simulations are dis-
played in Fig. 5. The results shown in this figure indicate
that the unit cell size (within the range examined) has
a very weak effect on the computed percolation thresh-
old.

3.3. Computation of the electrical
conductivity

The electrical network computational method de-
scribed in Section 2.3 is utilized in this section to com-

Figure 6 Effect of the volume fraction of the SWCNTs on the dc elec-
trical conductivity of CP2 polyimide + SWCNT composites.

pute the variation of the dc electrical conductivity of a
CP2 polyimide + SWCNTs composite. As stated ear-
lier these type of polymer matrix composites were used
by Ounaies et al. [3], and the experimental results of
Ounaies et al. [3] pertaining to the effect of the volume
fraction of SWCNTs on the (bulk) dc electrical conduc-
tivity in this material are displayed in Fig. 6. As seen, the
dc electrical conductivity changes by about nine orders
of magnitudes in the SWCNT volume fraction range
between 0.0002 and 0.0010. In sharp contrast, at the
SWCNT volume fraction levels outside this range, the
dc electrical conductivity changes much more slowly.
Specifically, at SWCNT volume fraction levels lower
than 0.0002, the dc electrical conductivity increases
with an increase in the SWCNT volume fraction be-
tween 6.3 × 10−18 S/cm (the dc electrical conductiv-
ity of the CP2 polyimide) and ∼3 × 10−17 S/cm. At
SWCNT volume fraction levels in excess of 0.0010,
on the other hand, the dc electrical conductivity in-
creases with an increase in the SWCNT volume frac-
tion between 1.6 × 10−8 S/cm and 3 × 10−7 S/cm.
The S-shaped character of the dc electrical conduc-
tivity vs. the SWCNT volume fraction relationship
shown in Fig. 6 is an indication of the percolation
transition with the percolation threshold being around
0.0005.

As discussed in Section 2.3, the dc conductivity of the
composite material at the SWCNT volume fractions ex-
ceeding the percolation threshold is assumed to be dom-
inated by current conduction through the percolating
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SWCNT clusters. At volume fractions lower than the
percolation threshold, non-percolating SWCNT clus-
ters are assumed to be bridged by fibers of the CP2
polymeric material. The cross section area of such CP2
fibers is set equal to the surface area of unit cell face. The
non-percolating SWCNT clusters in the composite ma-
terial containing a hypopercolation threshold volume
fraction of the SWCNTs are generated in the following
way: First, a configuration containing a SWCNT per-
colating cluster is generated using the procedure de-
scribed in Section 2.2. Then, the required number of
SWCNTs is at random replaced with the CP2 fibers
in order to obtain the target hypo-percolation threshold
volume fraction of the SWCNTs.

The computational results pertaining to the effect of
the volume fraction of SWCNTs on the dc electrical
conductivity in the corresponding CP2 polyimide ma-
trix composites are also shown in Fig. 6 both for the
non-interacting and for the interacting SWCNTs. The
results displayed in Fig. 6 show that, as expected, van
der Waals interactions between the SWCNTs give rise
to an increase in the computed percolation threshold.
Also, the computed percolation threshold for the in-
teracting SWCNTs is in significantly better agreement
with the experimental one. Furthermore, absolute val-
ues of the dc electrical conductivity both at the hypo-
and at the hyper-percolation threshold volume fraction
levels of the SWCNTs are in reasonably good agree-
ment with their experimental counterparts.

The post percolation threshold behavior of the dc
electrical conductivity in composite materials is often
modeled using the following power law:

σ = A(φ − φc)t (13)

where σ is the dc electrical conductivity, φ, the SWCNT
volume fraction and A and t percolation parameters.
Linear least-squares fitting of the log σ vs. (φ − φc)
computed results yielded A = 1.6 × 10−6 S/cm
and t = 0.87 for the non-interacting SWCNTs and
A = 2.0 × 10−5 S/cm and t = 1.17 for the interact-
ing SWCNTs. The latter set of data is in somewhat
better agreement with their experimental counterparts
(A = 6.7 × 10−4 S/cm and t = 1.38) obtained using
the results of Ounaies et al. [3]. It should be noted that
the φc values listed in Table II which were obtained
using the numerical model and, thus, deemed most re-
liable, are used in this procedure. The value t = 1.17 is
not in a very good agreement with the theoretical value
of ∼2 predicted by Sahimi [17] for three-dimensional
percolating systems. However, the value of φc used gen-
erally can have a significant effect of the value of t . This
is found to be the case in the present work where the
use of the analytical values for φc form Table I yields
t = 1.79 which is in a significantly better agreement
with its theoretical counterpart.

4. Conclusions
Based on the results obtained in the present work, the
following main conclusions can be drawn:

1. A relatively simple analytical percolation model
based on the concept of an excluded volume gives rise
to the values of the percolation threshold for a disper-
sion of single-walled carbon nanotubes (SWCNTs) and
SWCNT bundles within a non-reactive polymeric ma-
trix which are within few percents of the percolation
threshold values obtained using a more accurate, but
computationally quite intensive numerical approach.

2. Van der Walls interactions between the SWCNTs
and the associated mutual local alignment of the nan-
otubes gives rise to an increase in the computed per-
colation threshold making it very comparable with its
experimental counterpart.

3. The dc electrical conductivity of polymer matrix
materials containing SWCNT fillers can be success-
fully predicted using an electrical network analysis.
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